
Learning Rewards for Long Horizon Rearrangement
Lucas Chen

Intro
We teach a robot to rearrange randomly scattered objects into a goal arrangement.

- We learn a reward function from pure Brownian noise and use it to guide policy learning.
- Brownian noise contains information about the gradient of positions that lead to the goal state.

We (attempt to) show that such a reward can meaningfully guide policy learning to solve simple and
complex pusher environments.

Experiments

Pusher Paddle

Blocks

Walls

Brownian noise generation 

t = 1 / 500
(goal)

t = 2 / 500 t = 320 / 500 t = 500 / 500
(noise)

Spread over 1 epoch

Learning the noise 
Cube positions

timestep

Segmented Image

CNN

timestep

MSE LOSS 

Environments 

Default Box Divider

Outputs 

Block Positions
Pros: Easy to learn noise model
Cons: Hard to train RL on

Segmentation
Pros: RL is somewhat possible,
with Q-learning
Cons: Hard to learn noise model

Method
The reward function estimates the current timestep for a given configuration of cubes. The reward signal
is then derived as the change in this estimate between consecutive states.

- Predicting the timestep forces the network to learn the route to the goal, even if there are walls or
obstacles in the way.

Why we cannot predict the gradient directly:
Brownian walks follow the Markov Property — for any current states, all possible next states are equally
likely. As a result, directly predicting the gradient between two states is equivalent to predicting noise.

An issue with learning from random walks is that the chance a walk will travel far from the goal area is
small. This causes a sample imbalance where most samples are clustered around the center. In this work,
we use some ad-hoc methods to restart walks at states that need more samples (and this works due to
Markovian Property). The proper way to do it requires estimating the distribution of the walks, which is
difficult!

RL Training
When the paddle could be far away from the desired cube, it could take
a lot of actions to make any change to the reward function. So the action
space was paired with a local controller to span these long gaps in a few
actions.

Action Space X and Y coordinates where to send the paddle to

The Reward is set as

and is a “hurry up” factor to to incentivize the policy to finish sooner,
usually set to somewhere in [0.01, 0.05]

Algorithm We can use Double DQN to predict a probability map of
whether to go to each pixel. This allows us to avoid learning a regression
task, which is quite hard given the large size of our environment.

Perturbed State Final State Goal State (GT)

Visualizing the paths stored in the reward function. Here we apply an omniscient force on each cube
according to the gradient of the reward function (the version that takes positions as inputs)

Noise Model Training Loss 

Don’t be fooled! Most of the
learning happens in the valley

Sawtooth pattern caused by sample
imbalances (despite our best efforts)

Results
No RL training results, yet :(

Perturbed State Final State Goal State (GT)

Default Env Divider Env (zoomed in)

This env is much harder to learn
since the extended walk lengths
lead to more noise

MSE LOSS 

Perturbed State Final State Goal State (GT)

