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Intro
We teach a robot to rearrange randomly scattered objects into a goal arrangement.

- We learn a reward function from pure Brownian noise and use it to guide policy learning. 
- Brownian noise contains information about the gradient of positions that lead to the goal state. 

We (attempt to) show that such a reward can meaningfully guide policy learning to solve simple and 
complex pusher environments.
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Pros: Easy to learn noise model
Cons: Hard to train RL on
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Pros: RL is somewhat possible, 
with Q-learning
Cons: Hard to learn noise model

Method
The reward function estimates the current timestep for a given configuration of cubes. The reward signal 
is then derived as the change in this estimate between consecutive states. 

- Predicting the timestep forces the network to learn the route to the goal, even if there are walls or 
obstacles in the way.

Why we cannot predict the gradient directly: 
Brownian walks follow the Markov Property — for any current states, all possible next states are equally 
likely. As a result, directly predicting the gradient between two states is equivalent to predicting noise. 

An issue with learning from random walks is that the chance a walk will travel far from the goal area is 
small. This causes a sample imbalance where most samples are clustered around the center. In this work, 
we use some ad-hoc methods to restart walks at states that need more samples (and this works due to 
Markovian Property). The proper way to do it requires estimating the distribution of the walks, which is 
difficult!

RL Training
When the paddle could be far away from the desired cube, it could take 
a lot of actions to make any change to the reward function. So the action 
space was paired with a local controller to span these long gaps in a few 
actions.

Action Space X and Y coordinates where to send the paddle to

The Reward is set as 

and     is a “hurry up” factor to to incentivize the policy to finish sooner, 
usually set to somewhere in [0.01, 0.05]

Algorithm We can use Double DQN to predict a probability map of 
whether to go to each pixel. This allows us to avoid learning a regression 
task, which is quite hard given the large size of our environment.

Perturbed State Final State Goal State (GT)

Visualizing the paths stored in the reward function. Here we apply an omniscient force on each cube 
according to the gradient of the reward function (the version that takes positions as inputs)
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Don’t be fooled! Most of the 
learning happens in the valley

Sawtooth pattern caused by sample 
imbalances (despite our best efforts)

Results
No RL training results, yet :(

Perturbed State Final State Goal State (GT)

Default Env Divider Env (zoomed in)

This env is much harder to learn 
since the extended walk lengths 
lead to more noise
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